Typical examples for limits, test areas and swabbing methods

<table>
<thead>
<tr>
<th>Test area</th>
<th>Typical lower limits (RLU)</th>
<th>Typical swab method/sampling area/sample surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hands and fingers</td>
<td>1500</td>
<td>Palm, areas between fingers, fingernails</td>
</tr>
<tr>
<td>Kitchens, Restaurants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish knife (cutting edge)</td>
<td>200</td>
<td>The entire cutting edge of the knife</td>
</tr>
<tr>
<td>Fish knife (handle)</td>
<td>500</td>
<td>The entire handle</td>
</tr>
<tr>
<td>Butcher’s knife (cutting edge)</td>
<td>200</td>
<td>The entire cutting edge of the knife</td>
</tr>
<tr>
<td>Butcher’s knife (handle)</td>
<td>500</td>
<td>The entire handle</td>
</tr>
<tr>
<td>Cutlery</td>
<td>200 - 500</td>
<td>Entire cutlery</td>
</tr>
<tr>
<td>Dish</td>
<td>200 - 500</td>
<td>Bottom of the dish</td>
</tr>
<tr>
<td>Salad servers</td>
<td>200</td>
<td>Inside of the server and handle</td>
</tr>
<tr>
<td>Vegetable knife</td>
<td>200</td>
<td>Entire cutting edge</td>
</tr>
<tr>
<td>Meat processing machine</td>
<td>200</td>
<td>Edge of the rotary cutting edge</td>
</tr>
<tr>
<td>Cutting machine (surface)</td>
<td>200</td>
<td>The turntable</td>
</tr>
<tr>
<td>Colander</td>
<td>200</td>
<td>100 cm² in the centre</td>
</tr>
<tr>
<td>Weighing scales</td>
<td>200</td>
<td>Scale pan</td>
</tr>
<tr>
<td>Spice container</td>
<td>200</td>
<td>Use the swab to wipe the area that is touched</td>
</tr>
<tr>
<td>Production facilities, equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td>200</td>
<td>The corners of the spout</td>
</tr>
<tr>
<td>Refrigerator handle</td>
<td>200</td>
<td>Inside and outside</td>
</tr>
<tr>
<td>Refrigerators, inside</td>
<td>500</td>
<td>100 cm²</td>
</tr>
<tr>
<td>Pots</td>
<td>200</td>
<td>Inside</td>
</tr>
<tr>
<td>Microwave oven (handle)</td>
<td>200</td>
<td>Inside and outside</td>
</tr>
<tr>
<td>Beer tap installation</td>
<td>200</td>
<td>Inside the outlet</td>
</tr>
<tr>
<td>Toilet door handle</td>
<td>200</td>
<td>Entire handle</td>
</tr>
<tr>
<td>Entrance door handle</td>
<td>200</td>
<td>Wipe all of it with the swab</td>
</tr>
<tr>
<td>Tray</td>
<td>200</td>
<td>At least 100 cm² of the surface</td>
</tr>
<tr>
<td>Tables</td>
<td>200</td>
<td>At least 100 cm² of the surface</td>
</tr>
<tr>
<td>Food container</td>
<td>200</td>
<td>At least 100 cm² of the surface</td>
</tr>
<tr>
<td>Kitchen worktops</td>
<td>200</td>
<td>100 cm²; at least in 5 different places</td>
</tr>
<tr>
<td>Cleaning brushes</td>
<td>200</td>
<td>Wipe off brushes with the swab</td>
</tr>
<tr>
<td>Sponge</td>
<td>500</td>
<td>Insert the swab into the sponge</td>
</tr>
<tr>
<td>Rubbish bin</td>
<td>500</td>
<td>At least 100 cm²</td>
</tr>
</tbody>
</table>

Each user must decide his/her individual limits for his/her own standardised procedures.
The hygiene monitoring table shows your equipment’s cleanliness

The “typical limits for cleanliness” listed on the preceding pages can be used for evaluating the individual results.

The sample is negative (clean) if the RLU level measured with the PD-20/PD-30 is less than the limit listed on the preceding page.

The sample is positive (contaminated) if the RLU level is more than double the standard level.

Samples with RLU measured values between these limits are in “the border area” and normally require an improvement in hygiene measures.

Here is an example of a standardised record:

<table>
<thead>
<tr>
<th>Item</th>
<th>Limits (RLU)</th>
<th>Current result</th>
<th>Recommendation</th>
<th>2nd measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accepted</td>
<td>Too high</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand</td>
<td>1500</td>
<td>3000</td>
<td>2500 B</td>
<td>Wash hands</td>
</tr>
<tr>
<td>Refrigerator handle</td>
<td>200</td>
<td>400</td>
<td>300 B</td>
<td>Rinse again</td>
</tr>
<tr>
<td>Sink</td>
<td>200</td>
<td>400</td>
<td>140 A</td>
<td></td>
</tr>
<tr>
<td>Beer dispenser</td>
<td>200</td>
<td>400</td>
<td>150 A</td>
<td></td>
</tr>
<tr>
<td>Cutting board</td>
<td>200</td>
<td>400</td>
<td>600 C</td>
<td>Repeat cleaning</td>
</tr>
<tr>
<td>Fish knife</td>
<td>200</td>
<td>400</td>
<td>100 A</td>
<td></td>
</tr>
<tr>
<td>Bowls</td>
<td>200</td>
<td>400</td>
<td>180 A</td>
<td></td>
</tr>
<tr>
<td>Weighing scales</td>
<td>200</td>
<td>400</td>
<td>1000 C</td>
<td>Repeat cleaning</td>
</tr>
<tr>
<td>Other items</td>
<td>200</td>
<td>400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General recommendation:
Please be more careful when cleaning surfaces that are difficult to clean.
The cutting board should be cleaned frequently.
Lumitester PD-20/PD-30 and LuciPac® Pen

Definition and use of the limits

Since the limits listed in this brochure do not include all possible sampling locations, it is necessary to create your own in-house limits. These limits should be based on data obtained from measurements at similar application sites or those which have been collected over a long time period from the application site which has to be defined.

A five-point plan can be used here.

1. Examine the existing situation or the conditions at the sampling point.
2. Decide on an experimental limit based on the data collected at similar sampling points within the same equipment.
3. Define your first limit (level 1) after normal cleaning by doubling the average value of the measurements.
4. The second limit (level 2) corresponds to the double of the first limit.
5. Correct the limits based on the measurements collected and experience gained.